
JOURNAL OF SPACECRAFT AND ROCKETS

Vol. 40, No. 6, November–December 2003

Genetic Algorithm and Calculus of Variations-Based
Trajectory Optimization Technique

Adam Wuerl∗

University of Washington, Seattle, Washington 98195
and

Tim Crain† and Ellen Braden‡

NASA Johnson Space Center, Houston, Texas 77058

A genetic algorithm is used cooperatively with the Davidon–Fletcher–Powell penalty function method and the
calculus of variations to optimize low-thrust, Mars-to-Earth trajectories for the Mars Sample Return Mission. The
return trajectory is chosen thrust-coast-thrust a priori, has a fixed time of flight, and is subject to initial and final
position and velocity equality constraints. The global search properties of the genetic algorithm combine with the
local search capabilities of the calculus of variations to produce solutions that are superior to those generated with
the calculus of variations alone, and these solutions are obtained more quickly and require less user interaction than
previously possible. The genetic algorithm is not hampered by ill-behaved gradients and is relatively insensitive to
problems with a small radius of convergence, allowing it to optimize trajectories for which solutions had not yet
been obtained. The use of the calculus of variations within the genetic algorithm optimization routine increased
the precision of the final solutions to levels uncommon for a genetic algorithm.

Nomenclature
Cp = position constraint weighting vector

in heliocentric Cartesian coordinates, m−1

Cv = velocity constraint weighting vector
in heliocentric Cartesian coordinates, s/m

Fi = absolute fitness of i th genome, dimensionless
fi = normalized fitness of i th genome, dimensionless
Gp = difference between actual and desired final

position vectors, m
Gv = difference between actual and desired

final velocity vectors, m/s
H = Hamiltonian matrix, dimensionless
m initial = initial mass of the spacecraft at the Martian

sphere of influence, kg
mpropellant = mass of propellant used during

heliocentric transfer, kg
n = number of genomes in the current

generation, dimensionless
P = penalty function value, dimensionless

Introduction

T ECHNIQUES for optimizing low-thrust spacecraft trajectory
problems have become increasingly important as more mis-

sions are designed around high specific impulse, low-thrust propul-
sion systems. Both direct and indirect routines have been used to
optimize low-thrust spacecraft trajectories; however, for some sce-
narios, convergence to the optimal solution is time-consuming, te-
dious, and sometimes not even possible. Direct methods that solve
for controls to optimize the objective function directly, often via
a gradient-based search, suffer from two major drawbacks. First,
because search direction is ultimately driven by the local value of
the gradient vector, the solution can converge on local, rather than

Received 16 August 2002; revision received 7 March 2003; accepted for
publication 14 March 2003. Copyright c© 2003 by the authors. Published
by the American Institute of Aeronautics and Astronautics, Inc., with per-
mission. Copies of this paper may be made for personal or internal use,
on condition that the copier pay the $10.00 per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include
the code 0022-4650/03 $10.00 in correspondence with the CCC.

∗Student, Department of Aeronautics and Astronautics. Member AIAA.
†Engineer, EG5/Advanced Mission Design. Member AIAA.
‡Engineer, EG5/Advanced Mission Design.

global, minima, resulting in a final solution that is not globally op-
timal and cannot be further optimized. Second, the optimal solution
often has a small radius of convergence, requiring that the guesses
for the initial parameters be close to the optimal answer.1 Indirect
methods, such as the calculus of variations, obtain optimal results by
solving for the costates of a related boundary value problem and not
for the controls directly. Although indirect methods are generally
more likely to find a true, rather than local, optimum, both direct
and indirect approaches share many of the same drawbacks, most
notably a small radius of convergence.2

Therefore, it is vital to choose initial parameter values intelli-
gently; failure to do so will either dramatically increase the required
computation or preclude obtaining a solution entirely. When in-
direct methods are used, where the optimization parameters are
generally not related to the trajectory in an intuitive or straight-
forward manner, there may not be knowledge of the parameter
bounds or their sensitivity. A common strategy to improve ini-
tial parameter selection uses previously optimized parameter val-
ues from a similar problem as an initial guess. If no closely re-
lated solutions exist, initial values are found by optimization of
an entire series of intermediate problems relating the new scenario
to one with a known solution, a procedure known as homotopy
analysis.3 Unfortunately, this method is time consuming, does not
always succeed, and previously optimized solutions are not always
available.

More recently, the genetic algorithm (GA) has emerged as an
alternative optimization technique that avoids these shortcomings
because it does not attempt to extract information from complicated
or ill-behaved gradients. It is also less hampered by discontinuities
and irregularities in the solution space.1,4 GAs do not utilize initial
guesses; they are able to search for the global minimum without
knowing its approximate location by statistically sampling the pa-
rameter space for the optimal solution. Although GAs also require
the user to set initial parameters such as population size and con-
vergence criteria, these parameters are less difficult to determine
because the results of previous research, an understanding of sta-
tistical analysis, and even intuition are often enough to enable an
intelligent selection. If the initial population is large enough, this
method is virtually guaranteed to be accurate, but if the GA is not
combined with a local search algorithm, a common drawback is
insufficient precision in the final solution.1,2,4,5 Crain et al.6 have
addressed this problem by using a GA in series with a gradient-
based optimization technique, feeding a GA’s results to a recursive

882

WUERL, CRAIN, AND BRADEN 883

quadratic programming (RQP) module to increase solution preci-
sion efficiently.

The technique presented in this paper is an extension of the
serial GA–RQP technique that more closely couples the differ-
ent search methods, combining a GA with the Davidon–Fletcher–
Powell (DFP) penalty function and calculus of variations (COV)
method to optimize low-thrust, Mars-to-Earth trajectories. The
DFP–COV method and the GA work cooperatively throughout the
optimization process, optionally providing mutual and active feed-
back as they sample the parameter space seeking the global min-
imum. After the approximate location of the global optimum is
found, the DFP–COV technique is used to further refine the results
of the cooperative effort. The cooperative technique works around
the GA’s inherent precision limitation and the COV’s sensitivity
to initial guesses to obtain quickly and reliably optimal solutions
superior to those obtained with other methods.

A similar GA and COV-based technique was implemented by
Hartmann et al.7 to find families of Pareto optimal solutions, or so-
lutions to problems with a set of competing objectives. The authors’
success at finding families of Pareto optimal solutions to the Earth–
Mars transfer problem, with final mass and time of flight as com-
peting objectives, supports the use of GAs in trajectory optimiza-
tion problems. The research presented in this paper complements
previous efforts, but differs by optimizing a single performance pa-
rameter, solving the return Mars–Earth transfer, and implementing
a Lamarckian learning strategy not studied by the Hartmann et al.7

Pareto GA.

Mars Sample Return Mission
The results presented in this paper support the Mars Sample Re-

turn Mission (MSRM), described in detail by Vadali et al.8 A chemi-
cal propulsion system will be used to land a spacecraft on the surface
of Mars to collect samples. After ascent to low-Mars orbit (LMO),
a solar electric propulsion (SEP) system will perform the Earth re-
turn, which consists of three major segments: a spiral from LMO to
the Martian sphere of influence (SOI), a heliocentric transfer from
the Martian SOI to the Earth’s SOI, and a spiral from the Earth’s
SOI to low Earth orbit. The technique presented in this paper has
been used to optimize the heliocentric leg of this journey. The ini-
tial heliocentric spacecraft position and velocity are those of Mars,
obtained from an ephemeris model.9 The heliocentric transfer is
modeled with two-body dynamics, and a fixed-step, fourth-order
Runge–Kutta integrator is used to forward propagate the equations
of motion. The spacecraft’s target position and velocity are equal to
Earth’s position and velocity. Details of the SEP system are shown
in Table 1.

Past MSRM Optimization Methods
Past efforts to optimize the MSRM return trajectory were accom-

plished using the DFP penalty function and COV method.10 The
heliocentric return trajectory was modeled as three arcs, chosen
thrust-coast-thrust a priori, and described by 38 parameters; there
was no switching function to determine the thrust sequence. Two of
the parameters defined the duration of the first thrust arc and dura-
tion of the coast arc. Both of the thrust arcs were partitioned into
three equal-duration segments, each of which was described in the
COV problem by a six-element costate vector of Lagrange multipli-
ers, which provided the remaining 36 parameters. Additional thrust
and coast arcs could be added, potentially to improve performance,
at the expense of additional duration and costate parameters. The
state vector was required to be continuous at arc boundaries, but the
costate vector was not. Similarly, the spacecraft trajectory was sub-
ject to initial and final position and velocity constraints, as described

Table 1 SEP system details

Parameter Value

Specific impulse, s 3800
Thruster input power, kW 3.00
Thruster efficiency 0.68

earlier, but transversality (boundary) constraints were not imposed
on the costates. The DFP method was used to determine the values
of the 38 parameters that minimize a penalty, rather than objective,
function, which enables the constrained minimization problem to be
simplified by reexpression of the constraints as terms in the penalty
function, shown as Eq. (1):

P = mpropellant

m initial
+ 1

2

[(
n∑

i = 1

Cp,i G
2
p,i +

n∑
i = 1

Cv,i G
2
v,i

)]
(1)

The first term in the penalty function is the desired performance
index, the propellant mass fraction, defined as the required propel-
lant mass divided by the initial mass of the spacecraft. The propellant
mass is an explicit function of the two time parameters and the user-
defined time of flight (TOF) because the propulsion system has a
constant specific impulse. The vehicle’s final position and velocity
are obtained from the 38 parameters by forward integration of the
state and costate differential equations.

The second term in the penalty function is the penalty term, which
quantifies constraints violation. The vectors Cp and Cv can be ad-
justed to enhance or diminish the influence of the penalty terms.

The DFP method assumes that the function to be minimized is
quadratic and perturbs the initial parameter values conjugate with
respect to H , which approaches the matrix of second partials near
the optimum. This technique has been found to achieve faster con-
vergence than other unconstrained minimization methods, such as
sectioning or steepest descents, but it is slower and less prone to suc-
ceed when the quadratic approximation is inaccurate or the initial
values are far from the optimal values. A more rigorous discus-
sion of the DFP penalty function method is provided by Johnson.10

The DFP penalty function and COV optimization technique just de-
scribed is referred to in this paper as the DFP–COV method, and
it yields promising results. However, the MSRM scenarios have a
small radius of convergence, which has made it tedious and time-
consuming to obtain results.

GA
GAs optimize problems through a mechanism similar to evolution

by randomly sampling the parameter space to create an initial pop-
ulation of potentially optimal solutions (genomes), which are bred
toward the optimal solution by encouraging the best-performing so-
lutions to pass their information to future generations. This process
iterates, with each generation becoming progressively more opti-
mal, until one condition in a set of convergence criteria is met. A
more detailed explanation of the GA used in this research is ex-
plained hereafter; for a generalized discussion of GAs, the reader is
referred to the literature.11,12

The GA was introduced to the MSRM optimization routine as a
method to decrease the required analysis time by providing a sys-
tematic and intelligent process for the identification of initial costate
vectors to the DFP–COV program. Primary objectives were to mini-
mize human oversight (maximize autonomy) and to obtain solutions
to problems that could not be solved with DFP–COV alone. Pur-
suant with these goals, the two programs were closely coupled to
reduce the need for human interaction and duplicate computation.
The GA used the penalty function, Eq. (1), as its performance in-
dex, which eliminated the necessity to remodel, and recompute,
the problem dynamics. Additionally, use of the penalty function al-
lowed for a more direct comparison of the GA’s results to those
previously produced by the DFP–COV method alone. Reduced
human interaction was achieved when various learning strategies
were enabled and by the judicious selection of convergence cri-
teria, which strike a balance between early and late termination,
which lead to unnecessary oversight and extraneous calculation,
respectively.

The GA used in this research was originally formulated to max-
imize, not minimize, the performance index, which required one
minor modification to the penalty function. The GA’s performance
index F was defined to be the reciprocal of the penalty function,
Eq. (1). An attempt to maximize the reciprocal of P was equivalent

884 WUERL, CRAIN, AND BRADEN

Fig. 1 Organization of the GA and its relationship with the DFP–COV
program.

to the minimization P because selection was based on normalized
values. (See the Selection section.)

The GA used in this research also required that the 38 real-
valued parameters be represented as binary numbers. Between 13
and 15 bits were used to represent each parameter, based on its
bounds and the required precision, which were determined by the
analysis of previous solutions. The bits representing each parameter
were concatenated to construct a genome, a 518-bit binary string
that constituted a potential solution. A group of genomes is a set of
potential solutions and is known as a generation.

Initial Generation
The operation of the GA and its interaction with the DFP–COV

program is shown in Fig. 1. An initial generation was populated
with a set of randomly created genomes that is large enough to en-
sure genetic diversity. Too small a population would have difficulty
converging on the optimal solution because the genomes would not
accurately represent the entire set of possible solutions. However,
an overly large population would unnecessarily increase the GA’s
computational requirements. The optimal population size depends
on the problem being optimized, but for the MSRM problems being
solved, a 380-genome population was found to provide solutions as
optimal as those found with the DFP–COV. (See the Results sec-
tion.) Potential future work could study the impact of population
size on performance.

Penalty Function Evaluation
After the initial generation was created, the 380 genomes were

linearly mapped to 38-parameter sets of real-valued numbers and
passed to the DFP–COV program. When the GA and DFP–COV
program were used cooperatively (Learning Strategies section), the
output from the DFP–COV program was used to determine ap-
propriate parameter bounds. If the DFP optimizer tried to force a
parameter past one of its bounds, the user was notified so that the
bound could be expanded. Likewise, the user was informed if the
magnitude of the DFP method’s perturbation was below the binary
precision limit of the GA. This allowed the user to shrink the bounds
or increase the number of bits to increase precision.

The DFP–COV program evaluated the value of the penalty func-
tion for each genome via one of two methods. In the first method,
the COV program used the durations of the trajectory arcs and the
costate vectors to compute the spacecraft trajectory and evaluate
the resulting penalty function value. The DFP method was not used
to optimize the parameters before the penalty function value was
returned to the GA program.

In the second method, the DFP–COV optimization routine was
used cooperatively with the GA. As in the first method, the COV
program evaluated the penalty function, but the DFP program also
executed several times in an attempt to partially optimize the poten-
tial solution. The number of DFP iterations was fixed for all genomes
(typically 5–15 iterations) at 5–15% of the average number of it-
erations required to optimize a trajectory fully, given a good initial
parameter set and H matrix. A good initial parameter set requires
no further homotopy analysis or reinitialization of the H matrix to
converge and shows the largest improvement in the penalty function
value during the first 5–15 iterations because H is close to the opti-
mal direction of search. If the initial guesses are not good, the first
several iterations are spent on the reinitialization of H , with little
improvement in the penalty function. Therefore, rapid improvement
in the penalty function during a small number of iterations can be
used as an evaluation of the quality of the genome’s ability to con-
verge to the optimum and not just its proximity to the optimum.
The user has the option of returning only the improved penalty
function value or the penalty function value and the perturbed
parameters.

Learning Strategies
The choice to partially optimize each genome is represented by

the memetic search decision gate in Fig. 1. The noncooperative op-
tion is similar to the method used by Crain et al.6 and does not use the
DFP optimization routine, which reduces computation time; there-
fore, an attempt is always made to use this method before penalty
function feedback is implemented. The second method employs the
DFP- and GA-based methods working cooperatively as a memetic
algorithm, genetic search coupled with a localized optimization
program.

One cooperative option returns the partially optimized penalty
function values, but not their corresponding improved parameter
values, to evaluate the genome’s potential to be an optimal solution.
This is measured by its ability to achieve a large decrease in penalty
function value over a small number of iterations. The genomes are
not actually changed, and, therefore, the original genetic informa-
tion remains intact. However, because the penalty function is the sole
factor influencing selection, genomes that improve quickly during
partial optimization attain higher fitness. This method allows learn-
ing ability to influence natural selection without directly altering
genetic information and is, therefore, analogous to the biological
mechanism described by Baldwin13,14 and the learning strategy im-
plemented by Hartmann et al.7

The second cooperative option returns the perturbed parameter
values and the corresponding updated penalty function value to the
GA, overwriting the original genome. Because any improvement in
a genome’s penalty function value represents learning and adapta-
tion, the genome replacement option represents a situation where
learned traits become heritable to later generations, a theory first
proposed for biological systems by Lamarck in the early 1800s.15,16

Direct alteration of the gene pool via a Lamarckian strategy al-
lows problems to converge much more quickly; however, this is not
necessarily positive because a lack of genetic diversity can lead to
premature convergence and insufficient evaluation of the parameter
space. This research suggests that premature convergence has not
been an issue because the solutions compare favorably to previous
results (see the Results section), but future researchers should be
cognizant of various learning strategies and the potential for early
convergence.

Selection
Following the process outlined in Fig. 1, after the penalty func-

tion values (and possibly new parameter values) are returned to the
GA, the next step is selection. (Elitism and convergence are not en-
forced on the initial generation; see the Elitism and Convergence
Criteria section.) Selection determines the genomes that will be al-
lowed to pass their genetic information onto future generations. The
selection method is a Roulette wheel, where the probability of a par-
ticular genome being selected for procreation is determined by its

WUERL, CRAIN, AND BRADEN 885

normalized fitness, defined by Eq. (2):

fi = Fi

/ n∑
i = 1

Fi (2)

The use of a normalized fitness distribution linearizes the effect
of evaluation of the reciprocal of the penalty function, such that if
two genomes’ penalty function values differ by a factor of two, the
genome with the better performance has twice the probability of
being selected.

Crossover and Mutation
Once parents are selected, their binary (genetic) data is crossed-

over to create a child genome. There is a 70% chance of crossover
occurring in each bit string, such that crossover could occur a
maximum of 38 times during the creation of one child genome,
once within each parameter’s bit string. Figure 2 is an example of
crossover between the bit strings corresponding to the first param-
eter of each parent. The crossover location, denoted by the solid
black line, is chosen at random. The bits from the first parent, up to
the crossover point, are copied into the bit string of the child. The
remaining bits are copied from the second parent. If crossover does
not occur for a certain parameter’s bit string, the bit string from the
parent with the highest fitness is passed to the child without change.
The selection and crossover process repeats to create n children,
which form the next generation. Parents that have been selected for
procreation are not removed from the selection pool, and so a single
genome can be the parent of multiple children.

After a new generation of children has been created, there is
a low probability, on the order of 1%, that each new bit will be
mutated (1 changed to 0 or vice versa); this process is also shown
in Fig. 2. Mutation prevents genetic diversity from being weeded
out prematurely and increases the chances of a global minimum
that has a small radius of convergence being found. The values of
the GA operating parameters used to generate the reported data,
such as generation size and crossover probability, are summarized
in Table 2.

Elitism and Convergence Criteria
After mutation, the fitness distribution of the new generation is

calculated, but before it is allowed to have its own offspring, elitism
is enforced, and the convergence criteria are evaluated. Elitism en-
sures that the best solution is never lost. If the genome with the largest

Table 2 Typical GA operating parameters

Parameter Value

Number of optimization parameters 38
Genome length, bits 570
Population size, genomes 380
Mutation probability 0.01
Crossover probability 0.7
Multipoint crossover Yes
Elitism Yes

Table 3 GA convergence criteria and typical variable values

Criterion
Number of Dependent

Convergence Typical genomes on earlier
Name condition value evaluated generation(s)

Elitism The elite genome has not X = 4 1 Yes
changed in X generations.

Penalty The penalty function value X = 5 1 No
function of the elite genome is below
value the cutoff threshold of X .

Percent The summed penalty function X = 40% X% of Yes
improvement values for the top X% of the Y = 0% population

population has not improved
by more than Y %.

value of F in the new generation (the new generation’s elite genome)
does not outperform the preceding generation’s elite genome, then
the old elite genome is copied over the worst performing member
of the new generation.

The convergence criteria, and typical values for the operating pa-
rameters, are shown in Table 3. The GA most commonly converged
because either the elitism or percent improvement criterion was met,
which were included as a means of measuring when the GA was
no longer effectively improving genomes. Because the elite genome
ultimately became the final solution, if it had not changed in a num-
ber of generations, the GA was halted. The elitism criterion most
often produced a genome within the DFP–COV method’s radius of
convergence, which made further GA iteration unnecessary. On oc-
casions when the elitism criterion produced premature convergence,
the GA was restarted and allowed to continue until halted by another
criterion.

The percent improvement criterion provided a measure of each
generation’s improvement and halted operation when the best per-
forming genomes, as a group, were not improving from generation to
generation. When the percent improvement criterion was enforced,
a solution could usually be obtained by application of the DFP–
COV method to the elite genome. The penalty function criterion
was included to terminate the program at a penalty function value
that would indicate close proximity to an optimal solution, based on
penalty function values for scenarios optimized earlier.

Localized Optimization
After convergence, the DFP–COV program performed additional

calculations to refine the GA’s solution and more precisely define
the optimal trajectory. The trajectory optimization technique con-
sisted of the GA and DFP–COV program working together to find
the approximate location of the global minimum, which was fur-
ther refined by the DFP–COV program to determine a precise so-
lution. It is not possible to prove that the final solutions obtained
are true global minimums, but the results can be compared against
those obtained with different optimization routines, especially the
DFP–COV method, to show that they are superior or at least equally
optimal solutions. (See the Results section.)

GA convergence typically occurred in fewer than 20 generations,
remarkably rapid given that a GA with similar genome length and
population size might be expected to create hundreds of generations
before converging.11,12 This potentially premature convergence was
intentional; the GA’s convergence criteria were tuned to halt the ge-
netic search when it was estimated that the elite genome was within
the radius of convergence of the best solution. It is possible, even
likely, that a substantially increasing population size and number of
GA iterations before convergence could obtain superior solutions,

Fig. 2 Example of crossover between the sixth and seventh bits and
mutation of the fifth bit.

886 WUERL, CRAIN, AND BRADEN

but the primary goal of this research was to create a rapid trajectory
optimization tool that produced solutions at least as good as those
obtained with only the DFP–COV method. Further optimization, at
the cost of additional computing time, was not a priority, although it
would provide an interesting area of future research. Likewise, GA
precision could be enhanced by increasing the number of bits used
to represent each parameter or by narrowing the parameter bounds.
However, once acceptable initial guesses for the DFP–COV pro-
gram had been found, it was more computationally efficient to halt
the GA and proceed with optimization of only the elite genome.

Results
A number of Mars Sample Return scenarios had been optimized

by the use of the DFP–COV method only. These scenarios were
optimized again by the use of the GA for comparison purposes.
The cooperative GA and DFP–COV tool (named RAPTOR) met
the goals of providing optimal solutions, especially to problems
without solutions, while also minimizing human oversight.

Finding a single solution with the DFP–COV method is a lengthy
process that can occupy an experienced user from a day to well
over a week, depending on the complexity of the problem and how
closely related it is to previously solved scenarios. Even a change
as small as lengthening the TOF from 460 to 530 days, while all
other aspects of the problem remain constant, could require several
homotopy steps where, in addition to the 530-day case, solutions for
the 475-, 490-, and 515-day cases might also be solved. Each case
would involve numerous restarts of the optimization program, where
input files would be edited by hand to update the initial guesses
parameters.

RAPTOR eliminated the hand editing process because the GA
interfaced with the DFP–COV program to update the parameter
values. Instead of having to monitor program progress and con-
tinuously restart the solver, the user could define the problem and
then perform other tasks or leave RAPTOR to run overnight, which
allowed a 24-h task to be completed in one 24-h day as opposed
to three 8-h days. Each of the scenarios described in this section
were autonomously solved with RAPTOR in less than 24 h. The
decrease in convergence time allowed the tool to be used as a
method to survey different spacecraft configurations and departure
parameters.

A number of possible return scenarios are described in Table 4.
Each scenario was optimized with the DFP–COV, and then again
with RAPTOR. There is one exception, noted in Table 4 and dis-
cussed later, for which the DFP–COV method could not find a so-
lution. Two different LMO spacecraft initial masses were analyzed
at a variety of departure dates and TOF from Mars to Earth. For
the smaller 400-kg spacecraft, a single two-thruster scenario was
also defined, which served only to double the mass flow rate and
thrust.

Table 4 Comparison of final spacecraft mass obtained with RAPTOR vs the DFP–COV method
for various scenarios

Case
Final mass, kgc

Initial mass Number of Departure TOF,b

in LMO, kg thrusters datea days RAPTOR DEF–COV Improvement,d %

600 1 07/16/2013 490 465.30 453.99 2.49
600 1 07/16/2013 460 468.27 461.19 1.54
600 1 07/16/2013 430 466.84 no convergence ——
400 2 05/07/2013 530 279.17 232.92 19.86
400 1 06/11/2013 470 311.58 309.45 0.69
400 1 07/11/2013 430 301.07 279.05 7.89
400 1 07/11/2013 460 310.01 307.35 0.87
400 1 09/09/2013 460 299.16 296.36 0.94
400 1 09/09/2013 430 303.04 301.37 0.56
400 1 10/09/2013 430 297.19 293.83 1.14

aDeparture date is the beginning of heliocentric transfer.
bTOF is the duration of heliocentric transfer.
cFinal mass is the mass of spacecraft at the end of the heliocentric transfer.
dImprovement is the (RAPTOR final mass minus the DFP–COV final mass times 100% over the DFP–COV final mass.

Genetic search and both memetic learning strategies were used
to obtain results in Table 4. The 7 May 2013 and the 430-day 16
July 2013 scenarios were solved by the use of the Lamarckian and
Baldwinian learning strategies, respectively. The remaining scenar-
ios were initially solved without partial optimization, although the
implemention of either of the parameter feedback techniques yielded
the same solutions. The ability of the Lamarckian learning strategy
to obtain a solution to the heretofore unsolved 430-day 16 July 2013
mission is a notable example of the benefit of this memetic search
technique.

The results obtained with RAPTOR show larger final masses de-
livered to the Earth’s SOI, confirming that the GA is able to find
optimal solutions of the same quality as the DFP–COV method.
For the two-thruster scenario, RAPTOR used the Baldwinian learn-
ing strategy to obtain a nearly 20% increase in final mass. The 7
May 2013 scenario was the first two-thruster case to be solved;
therefore, the initial COV costate vectors had to be obtained via
homotopy analysis from a one-thruster solution. Starting from a pa-
rameter set optimized for a one-thruster spacecraft prevented the
DFP optimizer from obtaining the more optimal trajectory found
by RAPTOR. The two-thruster solution illustrates the strength of
RAPTOR’s independence from initial guesses and freedom from the
influence of earlier solutions, which in this case resulted in superior
optimization.

Figure 3 shows the improvement of the elite genome’s penalty
function value for the 460-day mission departing Mars on 16 July
2013. The dramatic improvement in the first two generations (the
initial generation is counted as zero) is typical and occurs as the
GA quickly converges from randomized parameter values to values
closer to the optimal solution. Improvement continued, albeit less
quickly, through the 13th generation, when the percent improve-
ment criterion halted the GA. Figure 4 shows the final trajectories

Fig. 3 Improvement of elite genome for the 460-day, 16 July 2013
scenario.

WUERL, CRAIN, AND BRADEN 887

Fig. 4 Comparison of RAPTOR and DFP–COV method only opti-
mized trajectories for the 460-day, 16 July 2013 scenario.

Fig. 5 Comparison of spacecraft mass profiles for RAPTOR and DFP–
COV method only trajectories for 460-day, 16 July 2013 scenario.

Fig. 6 Comparison of RAPTOR and DFP–COV method only inclina-
tion for the 460-day, 16 July 2013 scenario.

for the same scenario obtained with RAPTOR and the DFP–COV
method only. The in-plane trajectories are almost identical, with the
exception of the slightly longer coast arc in the trajectory obtained
by RAPTOR, which resulted in a smaller propellant mass and larger
payload delivered to Earth’s SOI (Fig. 5). A more pronounced dif-
ference is shown in Fig. 6, which compares the orbital inclination
of both trajectories. For the RAPTOR trajectory, a larger portion of
the required inclination change occurred during the first thrust arc,
which is more efficient because the spacecraft’s velocity is smaller
as it leaves Mars. The more efficient plane change found by the
GA results in a longer coast arc and, thus, a higher spacecraft mass
returned to Earth. Figures 3–6 are typical results for the scenarios
presented in Table 4.

Conclusions
A GA has been used in conjunction with the DFP penalty function

method and the calculus of variations to optimize low-thrust, inter-
planetary trajectories for the MSRM. The reliance of the DFP–COV
method on earlier solutions and its sensitivity to the quality of the
initial guesses has been eliminated by relying on the GA to search the
parameter space to find the location of the globally optimal solution.
The DFP–COV method is used to refine the parameter set found by
the GA, improving the precision of the final answer beyond what
would be possible by the use of the GA alone. The genetic search
was further enhanced with learning strategies enabled by the use of
active feedback from the DFP–COV program, which increased the
likelihood of an optimal solution being found. Active feedback also
allowed the cooperative GA/DFP–COV technique to optimize sce-
narios that could not be optimized with DFP–COV alone. A number
of MSRM mission scenarios were analyzed with only the DFP–COV
method and then again with the DFP–COV method and GA work-
ing in conjunction. When the results were compared, the cooperative
GA/DFP–COV method obtained comparable or superior solutions
in substantially less time. Overall, the new GA and COV-based
method has increased the speed and efficiency of the optimization
routine, provided more optimal results, and allowed some scenar-
ios to be optimized for which solutions had not previously been
obtained.

References
1Dewell, L., and Menon, P., “Low-Thrust Orbit Transfer Optimization Us-

ing Genetic Search,” AIAA Guidance, Navigation, and Control Conference
and Exhibit, AIAA, Reston, VA, 1999, pp. 1109–1111.

2Betts, J. T., “Survey of Numerical Methods for Trajectory Optimiza-
tion,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998,
pp. 193–205.

3Bulirsch, R., Montrone, F., and Pesche, H., “Abort Landing in the Pres-
ence of a Windshear as a Minimax Optimal Control Problem, Part 2: Multiple
Shooting and Homotopy,” Journal of Optimization Theory and Applications,
Vol. 70, Aug. 1991, pp. 223–254.

4Rauwolf, G., and Coverstone-Carroll, V., “Near-Optimal Low-Thrust
Orbit Transfers Generated by a Genetic Algorithm,” Journal of Spacecraft
and Rockets, Vol. 33, No. 6, 1996, pp. 859–861.

5Coverstone-Carroll, V., “Near-Optimal Low-Thrust Trajectories via
Microgenetic Algorithms,” Journal of Guidance, Control, and Dynamics,
Vol. 20, No. 1, 1996, pp. 196–198.

6Crain, T. P., Bishop, R. H., Fowler, W. T., and Rock, K., “Interplan-
etary Flyby Mission Optimization Using a Hybrid Global/Local Search
Method,” Journal of Spacecraft and Rockets, Vol. 37, No. 4, 2000,
pp. 468–473.

7Hartmann, J. W., Coverstone-Carroll, V. L., and Williams, S. N., “Op-
timal Interplanetary Spacecraft Trajectories via a Pareto Genetic Algo-
rithm,” Journal of the Astronautical Sciences, Vol. 46, No. 3, 1998, pp. 267–
282.

8Vadali, S., Aroonwilairut, K., and Braden, E., “A Hybrid Trajectory
Optimization Technique for the Mars Sample Return Mission,” American
Astronautical Society/AIAA, Paper AAS 01-466, July 2001.

9Van Flandern, T. C., and Pulkkinen, K. F., “Low-Precision Formulea
for Planetary Positions,” Astrophysical Journal Supplement Series, Vol. 43,
No. 1, 1979, pp. 391–411.

10Johnson, I., “The Davidon–Fletcher–Powell Penalty Function Method:
A Generalized Iterative Technique for Solving Parameter Optimization Prob-
lems,” NASA TN D-8251, May 1976.

888 WUERL, CRAIN, AND BRADEN

11Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, 1st ed., Addison Wesley Longman, Reading, MA, 1989,
pp. 200–230.

12Goldberg, D. E., The Design of Innovation: Lessons from and for
Competent Genetic Algorithms, 1st ed., Kluwer Academic, Boston, 2002,
Chaps. 4–12.

13Baldwin, J. M., “A New Factor in Evolution,” American Naturalist,
Vol. 30, No. 354, 1896, pp. 441–451.

14Baldwin, J. M., “A New Factor in Evolution (continued),” American
Naturalist, Vol. 30, No. 355, 1896, pp. 536–553.

15Lamarck, J. B., Zoological Philosophy: An Exposition with Regard to

the Natural History of Animals, Translated by H. Elliot, 1st ed., Univ. of
Chicago Press, Chicago, 1984, Chap. 7.

16Lamarck, J. B., “Of the Influence of the Environment on the Activities
and Habits of Animals, and the Influence of the Activities and Habits of These
Living Bodies in Modifying Their Organisation and Structure,” Adaptive
Individuals in Evolving Populations: Models and Algorithms, edited by R. K.
Belew and M. Mitchell, Vol. 1, Santa Fe Institute Studies in the Sciences of
Complexity, Addison Wesley Longman, New York, 1996, Chap. 4.

C. A. Kluever
Associate Editor

